library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")
Create a function for downloading TCGA gene expression data.
For more detailed documentation, refer to
2. Differential Gene Expression Analysis - TCGA.Rmd
.
GDC_DIR = "../data/public/GDCdata"
query_and_filter_samples <- function(project) {
query_tumor <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Primary Tumor"
)
tumor <- getResults(query_tumor)
query_normal <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Solid Tissue Normal"
)
normal <- getResults(query_normal)
submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
dplyr::select(cases.submitter_id)
tumor <- tumor %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
normal <- normal %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
samples <- rbind(tumor, normal)
unique(samples$sample_type)
query_project <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = c("Solid Tissue Normal", "Primary Tumor"),
barcode = as.list(samples$sample.submitter_id)
)
# If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
# uncomment the code block below
# GDCdownload(
# query_coad,
# directory = GDC_DIR
# )
return(list(samples = samples, query_project = query_project))
}
Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).
projects <- c("TCGA-COAD")
with_results_projects <- c()
samples <- list()
project_data <- list()
for (project in projects) {
result <- tryCatch(
{
result <- query_and_filter_samples(project)
samples[[project]] <- result$samples
project_data[[project]] <- result$query_project
with_results_projects <- c(with_results_projects, project)
},
error = function(e) {
}
)
}
Running the code block above should generate and populate a directory
named GDCdata
.
Construct the RNA-seq count matrix for each cancer type.
tcga_data <- list()
tcga_matrix <- list()
projects <- with_results_projects
for (project in projects) {
tcga_data[[project]] <- GDCprepare(
project_data[[project]],
directory = GDC_DIR,
summarizedExperiment = TRUE
)
}
for (project in projects) {
count_matrix <- assay(tcga_data[[project]], "unstranded")
# Remove duplicate entries
count_matrix_df <- data.frame(count_matrix)
count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
count_matrix <- data.matrix(count_matrix_df)
rownames(count_matrix) <- cleanid(rownames(count_matrix))
count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]
tcga_matrix[[project]] <- count_matrix
}
Format the samples
table so that it can be fed as input
to DESeq2.
for (project in projects) {
rownames(samples[[project]]) <- samples[[project]]$cases
samples[[project]] <- samples[[project]] %>%
dplyr::select(case = "cases.submitter_id", type = "sample_type")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}
DESeq2 requires the row names of samples
should be
identical to the column names of count_matrix
.
for (project in projects) {
colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]
# Sanity check
print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}
For more detailed documentation on obtaining the gene set, refer to
7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd
.
RCDdb <- "../data/public/rcd-gene-list/unique-genes/necroptosis-ferroptosis-pyroptosis/"
Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.
filter_gene_set_and_perform_dgea <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
dds_rcd <- list()
res_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
dds$type <- relevel(dds$type, ref = "normal")
dds_rcd[[project]] <- DESeq(dds)
res_rcd[[project]] <- results(dds_rcd[[project]])
}
deseq.bbl.data <- list()
for (project in projects) {
deseq.results <- res_rcd[[project]]
deseq.bbl.data[[project]] <- data.frame(
row.names = rownames(deseq.results),
baseMean = deseq.results$baseMean,
log2FoldChange = deseq.results$log2FoldChange,
lfcSE = deseq.results$lfcSE,
stat = deseq.results$stat,
pvalue = deseq.results$pvalue,
padj = deseq.results$padj,
cancer_type = project,
gene_symbol = genes[rownames(deseq.results), "gene"]
)
}
deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)
return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)
deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
mutate(fdr_category = cut(padj,
breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
right = FALSE
))
top_genes <- deseq.bbl.data.combined %>%
group_by(cancer_type) %>%
mutate(rank = rank(-abs(log2FoldChange))) %>%
dplyr::filter(rank <= 10) %>%
ungroup()
ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
geom_point(alpha = 0.5, shape = 21, color = "black") +
scale_size_manual(values = sizes) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom") +
labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
vsd_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
# Perform variance stabilization
dds <- estimateSizeFactors(dds)
nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
vsd <- vst(dds, nsub = nsub)
vsd_rcd[[project]] <- assay(vsd)
}
return(vsd_rcd)
}
Fetch the gene set of interest.
genes <- read.csv(paste0(RCDdb, "Pyroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes
Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.
deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 3 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined
Plot the results.
plot_dgea(deseq.bbl.data.combined)
Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).
vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="
Download clinical data from TCGA, and perform some preprocessing: -
The deceased
column should be FALSE
if the
patient is alive and TRUE
otherwise - The
overall_survival
column should reflect the follow-up time
if the patient is alive and the days to death otherwise
download_clinical_data <- function(project) {
clinical_data <- GDCquery_clinic(project)
clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
clinical_data$days_to_last_follow_up,
clinical_data$days_to_death
)
return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
tcga_clinical[[project]] <- download_clinical_data(project)
}
Write utility functions for performing survival analysis.
construct_gene_df <- function(gene_of_interest, project) {
gene_df <- vsd[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "tumor")))
q1 <- quantile(gene_df$counts, probs = 0.25)
q3 <- quantile(gene_df$counts, probs = 0.75)
gene_df$strata <- ifelse(gene_df$counts >= q3, "HIGH", ifelse(gene_df$counts <= q1, "LOW", "MIDDLE"))
gene_df <- gene_df %>% dplyr::filter(strata %in% c("LOW", "HIGH"))
gene_df$case_id <- paste0(sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 3))
gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
return(gene_df)
}
compute_surival_fit <- function(gene_df) {
return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
return(ggsurvplot(fit,
data = gene_df,
pval = T,
risk.table = T,
risk.table.height = 0.3
))
}
compute_survival_diff <- function(gene_df) {
return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html
Our genes of interest are GSDMD (the primary executor of pyroptosis) and the differentially expressed genes.
significant_projects <- c()
significant_genes <- c()
ctr <- 1
for (project in projects) {
for (gene in c("GSDMD", genes$gene)) {
cat(project, gene, "\n\n")
error <- tryCatch (
{
gene_df <- construct_gene_df(gene, project)
},
error = function(e) {
cat("\n\n============================\n\n")
e
}
)
if(inherits(error, "error")) next
if (nrow(gene_df) > 0) {
fit <- compute_surival_fit(gene_df)
tryCatch (
{
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(ctr)
ctr <- ctr + 1
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
significant_projects <- c(significant_projects, project)
significant_genes <- c(significant_genes, gene)
}
},
error = function(e) {
}
)
}
cat("\n\n============================\n\n")
}
}
TCGA-COAD GSDMD
Warning: Ran out of iterations and did not converge
[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=3, 21 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 2.667 0.167 2
strata=LOW 1 1 0.333 1.333 2
Chisq= 2 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.215e+01 4.171e+09 4.566e+04 0 1
Likelihood ratio test=2.2 on 1 df, p=0.1383
n= 3, number of events= 3
(21 observations deleted due to missingness)
============================
TCGA-COAD CHMP7
[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=4, 20 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 2.92 0.00238 0.0105
strata=LOW 1 1 1.08 0.00641 0.0105
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1285 0.8794 1.2535 -0.103 0.918
Likelihood ratio test=0.01 on 1 df, p=0.9178
n= 4, number of events= 4
(20 observations deleted due to missingness)
============================
TCGA-COAD GSDMC
[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=8, 16 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4 4 3.91 0.00198 0.00472
strata=LOW 4 4 4.09 0.00190 0.00472
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.05336 0.94804 0.77685 -0.069 0.945
Likelihood ratio test=0 on 1 df, p=0.9453
n= 8, number of events= 8
(16 observations deleted due to missingness)
============================
TCGA-COAD ELANE
[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=6, 18 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 1.98 0.521 0.899
strata=LOW 3 3 4.02 0.257 0.899
Chisq= 0.9 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8606 0.4229 0.9325 -0.923 0.356
Likelihood ratio test=0.87 on 1 df, p=0.3496
n= 6, number of events= 6
(18 observations deleted due to missingness)
============================
TCGA-COAD IRF1
[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=6, 18 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 4.52 0.509 2.56
strata=LOW 3 3 1.48 1.551 2.56
Chisq= 2.6 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.688 5.408 1.172 1.44 0.15
Likelihood ratio test=2.47 on 1 df, p=0.1159
n= 6, number of events= 6
(18 observations deleted due to missingness)
============================
TCGA-COAD CYCS
[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 3.07 0.371 1.18
strata=LOW 3 3 1.93 0.589 1.18
Chisq= 1.2 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.208 3.348 1.173 1.03 0.303
Likelihood ratio test=1.23 on 1 df, p=0.2675
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD GSDMA
[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=6, 18 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4 4 4.68 0.0997 0.536
strata=LOW 2 2 1.32 0.3546 0.536
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7222 2.0589 1.0075 0.717 0.474
Likelihood ratio test=0.5 on 1 df, p=0.478
n= 6, number of events= 6
(18 observations deleted due to missingness)
============================
TCGA-COAD CASP4
[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=8, 16 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 5 5 5.71 0.089 0.369
strata=LOW 3 3 2.29 0.222 0.369
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4981 1.6456 0.8281 0.601 0.548
Likelihood ratio test=0.36 on 1 df, p=0.5493
n= 8, number of events= 8
(16 observations deleted due to missingness)
============================
TCGA-COAD BAK1
[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 2.52 0.0928 0.26
strata=LOW 2 2 2.48 0.0941 0.26
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5892 0.5548 1.1718 -0.503 0.615
Likelihood ratio test=0.27 on 1 df, p=0.6001
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD NOD1
[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=7, 17 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 5 5 4.9 0.00214 0.0079
strata=LOW 2 2 2.1 0.00499 0.0079
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.0781 0.9249 0.8787 -0.089 0.929
Likelihood ratio test=0.01 on 1 df, p=0.9289
n= 7, number of events= 7
(17 observations deleted due to missingness)
============================
TCGA-COAD NLRP7
[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=6, 18 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 0.783 1.890 2.6
strata=LOW 4 4 5.217 0.284 2.6
Chisq= 2.6 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.766 0.171 1.235 -1.43 0.153
Likelihood ratio test=2.2 on 1 df, p=0.1382
n= 6, number of events= 6
(18 observations deleted due to missingness)
============================
TCGA-COAD CASP3
[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=4, 20 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 2.67 0.167 0.615
strata=LOW 2 2 1.33 0.333 0.615
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.9406 2.5616 1.2403 0.758 0.448
Likelihood ratio test=0.62 on 1 df, p=0.4325
n= 4, number of events= 4
(20 observations deleted due to missingness)
============================
TCGA-COAD GSDMB
[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 3.27 0.0218 0.0739
strata=LOW 2 2 1.73 0.0410 0.0739
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2739 1.3151 1.0107 0.271 0.786
Likelihood ratio test=0.07 on 1 df, p=0.7866
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD GZMB
[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 4.017 0.257 1.59
strata=LOW 2 2 0.983 1.051 1.59
Chisq= 1.6 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.439 4.215 1.236 1.164 0.244
Likelihood ratio test=1.46 on 1 df, p=0.2262
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD GSDME
[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=4, 20 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 1 1 0.25 2.25 3
strata=LOW 3 3 3.75 0.15 3
Chisq= 3 on 1 degrees of freedom, p= 0.08
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -2.208e+01 2.562e-10 3.607e+04 -0.001 1
Likelihood ratio test=2.77 on 1 df, p=0.09589
n= 4, number of events= 4
(20 observations deleted due to missingness)
============================
TCGA-COAD CHMP3
[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=4, 20 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 0.833 1.63 2.88
strata=LOW 2 2 3.167 0.43 2.88
Chisq= 2.9 on 1 degrees of freedom, p= 0.09
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -2.168e+01 3.848e-10 2.943e+04 -0.001 0.999
Likelihood ratio test=3.58 on 1 df, p=0.05836
n= 4, number of events= 4
(20 observations deleted due to missingness)
============================
TCGA-COAD DPP9
[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=3, 21 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 2.167 0.0128 0.0588
strata=LOW 1 1 0.833 0.0333 0.0588
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3466 1.4142 1.4355 0.241 0.809
Likelihood ratio test=0.06 on 1 df, p=0.8096
n= 3, number of events= 3
(21 observations deleted due to missingness)
============================
TCGA-COAD NOD2
[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 1 1 1.28 0.0626 0.0979
strata=LOW 4 4 3.72 0.0216 0.0979
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3695 1.4470 1.1865 0.311 0.755
Likelihood ratio test=0.1 on 1 df, p=0.7492
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD NLRC4
[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 4.017 0.257 1.59
strata=LOW 2 2 0.983 1.051 1.59
Chisq= 1.6 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.439 4.215 1.236 1.164 0.244
Likelihood ratio test=1.46 on 1 df, p=0.2262
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD GSDMD
[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=3, 21 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 2.667 0.167 2
strata=LOW 1 1 0.333 1.333 2
Chisq= 2 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.215e+01 4.171e+09 4.566e+04 0 1
Likelihood ratio test=2.2 on 1 df, p=0.1383
n= 3, number of events= 3
(21 observations deleted due to missingness)
============================
TCGA-COAD TIRAP
[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=7, 17 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 1.4 0.2547 0.359
strata=LOW 5 5 5.6 0.0638 0.359
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5445 0.5801 0.9202 -0.592 0.554
Likelihood ratio test=0.33 on 1 df, p=0.5629
n= 7, number of events= 7
(17 observations deleted due to missingness)
============================
TCGA-COAD SCAF11
[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=4, 20 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 1 1 2.08 0.563 1.78
strata=LOW 3 3 1.92 0.612 1.78
Chisq= 1.8 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.085e+01 1.136e+09 2.490e+04 0.001 0.999
Likelihood ratio test=2.77 on 1 df, p=0.09589
n= 4, number of events= 4
(20 observations deleted due to missingness)
============================
TCGA-COAD NLRP6
[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=7, 17 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4 4 4.75 0.120 0.417
strata=LOW 3 3 2.25 0.254 0.417
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5293 1.6977 0.8287 0.639 0.523
Likelihood ratio test=0.4 on 1 df, p=0.5252
n= 7, number of events= 7
(17 observations deleted due to missingness)
============================
TCGA-COAD AIM2
[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=6, 18 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4 4 4.38 0.0335 0.141
strata=LOW 2 2 1.62 0.0909 0.141
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3503 1.4194 0.9368 0.374 0.708
Likelihood ratio test=0.14 on 1 df, p=0.712
n= 6, number of events= 6
(18 observations deleted due to missingness)
============================
TCGA-COAD CASP6
[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=7, 17 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 3.45 0.0575 0.142
strata=LOW 4 4 3.55 0.0558 0.142
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3150 1.3703 0.8385 0.376 0.707
Likelihood ratio test=0.14 on 1 df, p=0.7076
n= 7, number of events= 7
(17 observations deleted due to missingness)
============================
TCGA-COAD NLRP2
[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 1.48 0.1800 0.297
strata=LOW 3 3 3.52 0.0759 0.297
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5493 0.5774 1.0198 -0.539 0.59
Likelihood ratio test=0.29 on 1 df, p=0.5922
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD IRF2
[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=4, 20 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 3.417 0.0508 0.424
strata=LOW 1 1 0.583 0.2976 0.424
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.8959 2.4495 1.4215 0.63 0.529
Likelihood ratio test=0.38 on 1 df, p=0.535
n= 4, number of events= 4
(20 observations deleted due to missingness)
============================
TCGA-COAD PJVK
[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=7, 17 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 2 0.506 0.856
strata=LOW 4 4 5 0.202 0.856
Chisq= 0.9 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8286 0.4366 0.9202 -0.901 0.368
Likelihood ratio test=0.83 on 1 df, p=0.3615
n= 7, number of events= 7
(17 observations deleted due to missingness)
============================
TCGA-COAD CASP5
[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=4, 20 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 2.92 0.00238 0.0105
strata=LOW 1 1 1.08 0.00641 0.0105
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1285 0.8794 1.2535 -0.103 0.918
Likelihood ratio test=0.01 on 1 df, p=0.9178
n= 4, number of events= 4
(20 observations deleted due to missingness)
============================
TCGA-COAD NLRP1
[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=8, 16 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4 4 4.5 0.0546 0.144
strata=LOW 4 4 3.5 0.0700 0.144
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2922 1.3394 0.7736 0.378 0.706
Likelihood ratio test=0.14 on 1 df, p=0.7041
n= 8, number of events= 8
(16 observations deleted due to missingness)
============================
TCGA-COAD CASP9
[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=6, 18 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3 3 4.27 0.376 1.67
strata=LOW 3 3 1.73 0.926 1.67
Chisq= 1.7 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.394 4.033 1.164 1.198 0.231
Likelihood ratio test=1.69 on 1 df, p=0.1937
n= 6, number of events= 6
(18 observations deleted due to missingness)
============================
TCGA-COAD PLCG1
[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2 2 1.73 0.0410 0.0739
strata=LOW 3 3 3.27 0.0218 0.0739
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.2739 0.7604 1.0107 -0.271 0.786
Likelihood ratio test=0.07 on 1 df, p=0.7866
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
TCGA-COAD IL18
[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=8, 16 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 5 5 4.63 0.0296 0.081
strata=LOW 3 3 3.37 0.0407 0.081
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.2207 0.8020 0.7765 -0.284 0.776
Likelihood ratio test=0.08 on 1 df, p=0.7754
n= 8, number of events= 8
(16 observations deleted due to missingness)
============================
TCGA-COAD DPP8
[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 1 1 0.2 3.200 4
strata=LOW 4 4 4.8 0.133 4
Chisq= 4 on 1 degrees of freedom, p= 0.05
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -2.204e+01 2.674e-10 3.057e+04 -0.001 0.999
Likelihood ratio test=3.22 on 1 df, p=0.07279
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
Display the results only for genes where a significant difference in survival has been reported.
significant_genes
[1] "DPP8"
num_significant_genes <- length(significant_genes)
if (num_significant_genes > 0) {
for (i in 1 : num_significant_genes) {
project <- significant_projects[[i]]
gene <- significant_genes[[i]]
cat(project, gene, "\n\n")
gene_df <- construct_gene_df(gene, project)
fit <- compute_surival_fit(gene_df)
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
cat("\n\n============================\n\n")
}
}
TCGA-COAD DPP8
Warning: Loglik converged before variable 1 ; coefficient may be infinite.
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=5, 19 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 1 1 0.2 3.200 4
strata=LOW 4 4 4.8 0.133 4
Chisq= 4 on 1 degrees of freedom, p= 0.05
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -2.204e+01 2.674e-10 3.057e+04 -0.001 0.999
Likelihood ratio test=3.22 on 1 df, p=0.07279
n= 5, number of events= 5
(19 observations deleted due to missingness)
============================
De La Salle University, Manila, Philippines, gonzales.markedward@gmail.com↩︎
De La Salle University, Manila, Philippines, anish.shrestha@dlsu.edu.ph↩︎